FLEXIBLE LATERAL MISSILE SUPPORT SYSTEM
Navy SBIR 2013.2 - Topic N132-143
SSP - Mr. Mark Hrbacek - mark.hrbacek@ssp.navy.mil
Opens: May 24, 2013 - Closes: June 26, 2013

N132-143 TITLE: FLEXIBLE LATERAL MISSILE SUPPORT SYSTEM

TECHNOLOGY AREAS: Materials/Processes

ACQUISITION PROGRAM: Strategic Systems Programs (SSP), ACAT I

RESTRICTION ON PERFORMANCE BY FOREIGN CITIZENS (i.e., those holding non-U.S. Passports): This topic is "ITAR Restricted". The information and materials provided pursuant to or resulting from this topic are restricted under the International Traffic in Arms Regulations (ITAR), 22 CFR Parts 120 - 130, which control the export of defense-related material and services, including the export of sensitive technical data. Foreign Citizens may perform work under an award resulting from this topic only if they hold the "Permanent Resident Card", or are designated as "Protected Individuals" as defined by 8 U.S.C. 1324b(a)(3). If a proposal for this topic contains participation by a foreign citizen who is not in one of the above two categories, the proposal will be rejected.

OBJECTIVE: Develop a lateral support system that is remotely operable, maintains launcher alignment, protects a launcher and payload from shock and vibration inputs while it is stowed within a missile tube environment, and is able to actively adjust to and react to a dynamic shock and vibration setting.

DESCRIPTION: Currently, lateral support between the launch canister and the missile tube is provided by twelve hydraulic-actuated jacking foot assemblies that sit on studs mounted in the launch canister. Each jacking foot is approximately 8 inches high by 12 inches wide and contoured to generally match missile tube curvature. A neoprene pad is bonded to each jacking foot to prevent metal-to-metal contact and provide flexibility between the shoe and missile tube wall. The purpose of the jacking feet is to provide lateral support to the launch canister within the missile tube for depth changes and shock. The design and location of the lateral support system are a function of the missile geometry and weight distribution and provide no ability to accommodate changes in payload configuration.

The current lateral support system is also a static system that cannot be accessed or adjusted with the launch canister in place. A significant effort is required to remove and repair current components and potentially destroys launcher components during removal. The large mechanical components also use up valuable tube space that could be otherwise mission-utilized.

The deployment of a new or upgraded missile will require changes to the current fixed lateral support systems. The jacking feet and pads could be replaced with advanced materials or components that can be tuned and adapted by a control system that would allow varying payloads in a configured tube without labor intensive and consumptive removal and install operations.

PHASE I:
• Develop operational scenarios and define parameters for payload flexibility and missile tube reconfiguration
• Develop concepts and perform trade studies and conduct analysis (e.g., Modeling & Simulation)
• Identify possible materials, components, and system design
• Perform full scale analysis of lateral support concept against defined shock and vibration scenarios.

PHASE II:
• Perform component and subscale testing (i.e., shock, vibration, age-life testing) with scaled payload
• Perform full scale testing with representative payload
• Develop control system for integration with ship/fire control

PHASE III: Transition concepts and technologies developed in Phase II to applicable launcher program(s) / area(s). Following the transition to launcher programs, work with the Launcher Branch to demonstrate a near tactical lateral support system’s functionality in conjunction with a representative payload shape in a simulated or relevant payload environment. The near tactical eject system needs to demonstrate the ability to protect the payload during a shock or vibration event and to adapt to alternate payloads.

PRIVATE SECTOR COMMERCIAL POTENTIAL/DUAL-USE APPLICATIONS: The lateral support technology is applicable for multiple commercial applications requiring shock and vibration protection. For example, a support system using magneto-rheological materials has been applied in the automotive industry such that the technology reduces shock and vibration inputs into the car resulting from rough road conditions.

REFERENCES:
1. Regelbrugge, Marc E.; Carrier, Alain C.; Dickson, William D.; (1995) Canceling vibrations with smart materials: a case study. Proceedings of SPIE - The International Society for Optical Engineering, v 2447, p 80-90, 1995

2. Song, G., Sethi, V., Li, H.-N.; (2004). Vibration control of civil structures using piezoceramic smart materials: A review; Department of Mechanical Engineering, University of Houston.

3. http://www.frost.com/prod/servlet/report-brochure.pag?id=D193-01-00-00-00, Smart Materials: Emerging Markets for Intelligent Gels; Ceramics; Alloys and Polymers (Technical Insights)
4. Sketches of current lateral support system (uploaded in SITIS 5/1/13).

KEYWORDS: Radial Support; Advanced Materials, lateral support; magneto-rheological; piezoelectric; Shape memory

** TOPIC AUTHOR (TPOC) **
DoD Notice:  
Between April 24 through May 24, 2013, you may talk directly with the Topic Authors (TPOC) to ask technical questions about the topics. Their contact information is listed above. For reasons of competitive fairness, direct communication between proposers and topic authors is
not allowed starting May 24, 2013, when DoD begins accepting proposals for this solicitation.
However, proposers may still submit written questions about solicitation topics through the DoD's SBIR/STTR Interactive Topic Information System (SITIS), in which the questioner and respondent remain anonymous and all questions and answers are posted electronically for general viewing until the solicitation closes. All proposers are advised to monitor SITIS (13.2 Q&A) during the solicitation period for questions and answers, and other significant information, relevant to the SBIR 13.1 topic under which they are proposing.

If you have general questions about DoD SBIR program, please contact the DoD SBIR Help Desk at (866) 724-7457 or email weblink.