Ultra-Wideband, Low-Power Compound Semiconductor Electro-optic Modulator
Navy STTR FY2013A - Topic N13A-T005
NAVAIR - Dusty Lang - navair.sbir@navy.mil
Opens: February 25, 2013 - Closes: March 27, 2013 6:00am EST

N13A-T005 TITLE: Ultra-Wideband, Low-Power Compound Semiconductor Electro-optic Modulator

TECHNOLOGY AREAS: Air Platform, Information Systems, Sensors

ACQUISITION PROGRAM: PMA 290

OBJECTIVE: Develop and demonstrate a compound semiconductor external electro-optic modulator for ultra-wideband RF/analog signal transmission on aircraft

DESCRIPTION: New military communications, sensing and surveillance systems require ever-faster real time acquisition and transmission of electronic signals to achieve continuous sensing of electromagnetic spectrum. For the development and utilization of such systems ultra-wide bandwidths, low power operation, immunity to interference and survival under high input signals are essential. Transmission of ultra-wide band digital data over fiber optic transmission lines is another essential application for next generation military communications and data centers. Such links provide immunity to interference and can survive large input signals and operate at moderate power levels. As wider and wider portions of the electromagnetic spectrum are accessed and utilized, wider operational bandwidths are needed. In these regards electro-optic modulators that require drive voltage less than 1 volt (V), broadband operation in excess of 40 gigahertz (GHz), loss <5 decibels (dB) and able to operate at optical powers up to 100 milliwatt (mW) are essential. Furthermore the impedance of the modulator electrode should be as close to 50 ohms as possible which eliminates impedance matching issues and reduces the return loss. It is also highly desirable for such modulator designs to be scaled up to wider bandwidths approaching 100 GHz, possibly at the expense of drive voltage. At present, there is not an existing technology that can deliver such a modulator.

Presently the most commonly used electro-optic modulator material system is lithium niobate (LiNbO3). This is a mature technology and can provide the required bandwidth using traveling wave designs. However velocity matching requires electrical signal to go faster than the optical signal. Furthermore electrode length is restricted due to precise velocity matching needed. These requirements make the drive voltage rather high, at 5 V or higher level, even for advanced designs using micro machining techniques. Polymers offer better velocity matching but drive voltages are also higher.

External electro-optic modulators provide distinct advantages. Such devices are also key components for fiber optic links, delay lines, transmitters and signal processing. For example broadband analog links with gain is possible using low drive voltage modulators that can transmit moderate optical powers. Compound semiconductor electro-optic modulators have lower electro-optic coefficients compared to LiNbO3 and polymers but have high refractive indices that show very little dispersion from microwave to optical frequencies. High refractive index improves electro-optic efficiency and low index dispersion allows traveling wave devices using the loaded line approach. Electro-optic efficiency can be increased further using multi quantum well cores. Modulators in such materials also benefit from advanced device processing techniques. Such techniques allow the fabrication of highly confined electro-optically active optical waveguides and nanowires. A tightly confined optical mode overlapping very well with externally applied electric fields can create very efficient electro-optic modulation enabling very low drive voltages. Compound semiconductors can enable development of electro-optic modulators with very low drive voltage and ultra-wide bandwidth operation. Major challenges include uncooled operation over -40 to +80 degrees Celcius (minimum), low thermal noise, compatibility with moderate power (100mW), low relative intensity noise laser diode sources, and compact packaging with bend insensitive single-mode fiber coupling.

PHASE I: Design an ultra-wideband semiconductor electro-optic modulator that provides very efficient electro-optic modulation. Establish proof of concept. Develop a modulator fabrication process and a modulator test plan.

PHASE II: Optimize electrical and optical design and fabricate low voltage high speed packaged modulator prototype. Demonstrate modulator electrical and optical performance for high speed and high frequency range operation. Demonstrate single-mode fiber pigtailed electro-optic modulator packaging.

PHASE III: Transition the demonstrated modulator technology to radar systems, electronic warfare systems, and communication systems on Naval Aviation Platforms.

PRIVATE SECTOR COMMERCIAL POTENTIAL/DUAL-USE APPLICATIONS: The technology would find application in commercial systems such as fiber-optic networks and telecommunications, where photonic integration offers compelling advantages over board-level processing.

REFERENCES:
1. Chen, D., Fetterman, H.R., Chen, A., Steier, W.H., Dalton, L.R., Wang, W., & Shi, Y. (1997). Demonstrations of 110 GHz electro-optic polymer modulators. Applied Physics Letters, 70(25), 3335-3337. doi:10.1063/1.119162

2. Nishimura, S., Inoue, H., Sano, H., & Ishida, K. (1992). Electrooptic effects in an InGaAs/InAlAs multiquantum well structure. IEEE Photonics Technology Letters, 4(10), 1123-1126. doi:10.1109/68.163753

3. Noguchi, K., Mitomi, O., & Miyazawa, H. (1998). Millimeter-wave Ti:LiNbO3 optical modulators. Journal of Lightwave Technology, 16(4), 615-619. doi:10.1109/50.664072

4. Shi, Y. (2006). Micromachined wide-band lithium-niobate electrooptic modulators. IEEE Transactions on Microwave Theory and Techniques, 54(2), 810-815. doi:10.1109/TMTT.2005.863063

5. Shin, J., Chang, Y., & Dagli, N. (2008). 0.3 V drive voltage GaAs/AlGaAs substrate removed Mach-Zehnder intensity modulators. Applied Physics Letters, 92(20), 201103-201105. doi:10.1063/1.2931057

6. Shin, J., Ozturk, C., Sakamoto, S.R., Chiu, Y.J., & Dagli, N. (2005). Novel T-rail electrodes for substrate removed low-voltage high-speed GaAs/AlGaAs electrooptic modulators. IEEE Transactions on Microwave Theory and Techniques, 53(2), 636-643. doi:10.1109/TMTT.2004.840735

7. Shin, J., Wu, S., & Dagli, N. (2007). 35-GHz bandwidth, 5-V-cm drive voltage, bulk GaAs substrate removed electrooptic modulators. IEEE Photonics Technology Letters, 19(18), 1362-1364. doi:10.1109/LPT.2007.902923

8. Teng, C.C. (1992). Traveling-wave polymeric optical intensity modulator with more than 40 GHz of 3-dB electrical bandwidth. Applied Physics Letters, 60(13), 1538-1540. doi:10.1063/1.107482

KEYWORDS: External; Electro Optic; Modulator; Semiconductor; Ultra-Wideband; Electromagnetic

** TOPIC AUTHOR **
DoD Notice:  
Between January 25 and February 24, 2013, you may talk directly with the Topic Author(s) to ask technical questions about the topics. For reasons of competitive fairness, direct communication between proposers and topic authors is not allowed starting February 25 , when DoD begins accepting proposals for this solicitation.
However, proposers may still submit written questions about solicitation topics through the SBIR/STTR Interactive Topic Information System (SITIS), in which the questioner and respondent remain anonymous and all questions and answers are posted electronically for general viewing until the solicitation closes. All proposers are advised to monitor SITIS (13A STTR Q&A) during the solicitation period for questions and answers, and other significant information, relevant to the STTR 13A topic under which they are proposing.

If you have general questions about DoD SBIR program, please contact the DoD SBIR Help Desk at (866) 724-7457 or email weblink.