Shock Tolerant, Solid State, Submersible Emergency Transmitter
Navy SBIR 2013.1 - Topic N131-051
NAVSEA - Mr. Dean Putnam - dean.r.putnam@navy.mil
Opens: December 17, 2012 - Closes: January 16, 2013

N131-051 TITLE: Shock Tolerant, Solid State, Submersible Emergency Transmitter

TECHNOLOGY AREAS: Ground/Sea Vehicles

ACQUISITION PROGRAM: PMS397 Ohio Replacement Program, ACAT ID.

RESTRICTION ON PERFORMANCE BY FOREIGN CITIZENS (i.e., those holding non-U.S. Passports): This topic is "ITAR Restricted". The information and materials provided pursuant to or resulting from this topic are restricted under the International Traffic in Arms Regulations (ITAR), 22 CFR Parts 120 - 130, which control the export of defense-related material and services, including the export of sensitive technical data. Foreign Citizens may perform work under an award resulting from this topic only if they hold the "Permanent Resident Card", or are designated as "Protected Individuals" as defined by 8 U.S.C. 1324b(a)(3). If a proposal for this topic contains participation by a foreign citizen who is not in one of the above two categories, the proposal will be rejected.

OBJECTIVE: The objective is to develop a solid state, easily reproducible, low-cost transmitter which exhibits high efficiency, long service life, and high shock survivability.

DESCRIPTION: Many Navy submersible systems have to meet the difficult and costly requirements of operating after major shock events. As a critical component of the Ohio Class Submarine Replacement Program, the Emergency Buoy Transmission System is a critical item that must work after experiencing a high shock event. The focus of this SBIR is to develop an innovative cost effective transmitter assembly that can meet high shock survivability requirements and function as a replacement for the current Emergency Buoy transmitter assembly. Innovative new technology will enable better mission performance and longer transmit windows while meeting shock in excess of four thousand g-forces. The Navy is seeking innovative high shock survivable alternatives that optimizes mission performance, cost savings, service life (low maintenance) and evolves the most current technology available to Navy use. The technology developed under this topic would be applicable to Ohio Class and Ohio Replacement submarines as an upgrade to the existing Emergency Buoy Transmission System.
Due to high shock requirements, the existing transmitter has a highly integrated design and layout that makes it difficult and costly to refurbish and upgrade individual components. The Navy has determined that upgrading some transmitter components is no longer feasible or economically practical. By developing an innovative approach to better integrate current digital and/or analog technology into a new buoy transmitter assembly, it may be possible to increase longevity and reduce lifecycle cost for the overall system. Most current transmitter technologies operate in the gigahertz range rather than the desired much lower megahertz frequency ranges (see references 1 and 2). In addition, there are several technical challenges involved with using current commercial technology including the high shock rating, required reliability and long service life (40 years with low maintenance). Innovation is needed to not only develop a transmitter that is highly shock survivable but can also operate in the much lower megahertz frequency ranges. The development of a transmitter that takes advantage of open architecture to enable flexibility regarding changes in technology in the commercial sector, particularly in the integration of high shock rated components, is of particular interest (see reference 3). Furthermore, development of smaller transmitters can also allow for innovative shock mitigation techniques that can be useful.

The transmitter concept and its required assembly should fit within a 13.5 inch diameter and 12 inch length space. Also, the concept should not exceed a maximum weight of 44 pounds. The full power transmission (60W) should be sustainable for more than 48 hours (goal is 72 hours). The transmitter assembly must meet extreme structural, shock and vibration requirements of references 4 and 5. The system will be required to survive in extreme weather conditions and rapid changes in temperature. Temperatures range from -40 degrees C to as high as +60 degrees C due to the operational environment for the mission. The transmitter must also be able to accept a preselected message as an input from the existing programmer as a primary function. The message is transmitted on a Continuous Wave (CW) signal on 4 sequential frequencies between 6 and 18 MHz. Off line power draw must not exceed (20µA).

The Phase I effort will not require access to classified information. If need be, data of the same level of complexity as secured data will be provided to support Phase I work. The Phase II effort will likely require secure access, and the contractor will need to be prepared for personnel and facility certification for secure access.

PHASE I: The company will develop concepts for an improved Emergency Buoy Transmission System that meet the requirements described above. The company will demonstrate the feasibility of the concepts in meeting Navy needs and will establish that the concepts can be feasibly developed into a useful product for the Navy. Feasibility will be established by material testing and analytical modeling. The small business will provide a Phase II development plan with performance goals and key technical milestones, and that will address technical risk reduction.

PHASE II: Based on the results of Phase I and the Phase II development plan, the small business will develop a scaled prototype for evaluation as appropriate. The prototype will be evaluated to determine its capability in meeting the performance goals defined in the Phase II development plan and the Navy requirements for the Emergency Buoy Transmission System. System performance will be demonstrated through prototype evaluation and modeling or analytical methods over the required range of parameters including numerous deployment cycles. Evaluation results will be used to refine the prototype into an initial design that will meet Navy requirements. The company will prepare a Phase III development plan to transition the technology to Navy use.

PHASE III: If Phase II is successful, the company will be expected to support the Navy in transitioning the technology for Navy use. The company will develop an Emergency Buoy Transmission System for evaluation to determine its effectiveness in an operationally relevant environment. The company will support the Navy for test and validation to certify and qualify the system for Navy use.

PRIVATE SECTOR COMMERCIAL POTENTIAL/DUAL-USE APPLICATIONS: The technology developed under this topic may have commercial application in naval vessel recovery, aviation search/recovery, and commercial seismic exploration.

REFERENCES:
1. Duym, Wade, "Effects of Digital Avionics Systems on the Survivability of Modern Tactical Aircraft." Naval Postgraduate School, Master’s thesis, June 1995.

2. Lindenmeier, H., Hopf, J., Reiter, L., Daginnus, M. et al., "A New Design Principle for a Low Profile SDARS-Antenna including the Option for Antenna-Diversity and Multiband Application," SAE Technical Paper 2002-01-0122, 2002,

3. Kelsic, Reddick, Tandy and Hackel "Adhesive Characterization and Testing for Cryogenic, High Shock Electronics Applications

4. Mil-S-901D, Shock Test, High Impact, Shipboard Machinery

5. Mil-STD-167-1A, Mechanical Vibrations of Shipboard Equipment

KEYWORDS: Emergency buoy transmitter; pressure switch; cable; shock-resistant emergency transmitter; high shock rated transmitter components; transmitter life in extreme conditions; Commercial Off The Shelf technology for transmitters

** TOPIC AUTHOR (TPOC) **
DoD Notice:  
Between 16 November, 2012 through 16 December 2012, you may talk directly with the Topic Authors (TPOC) to ask technical questions about the topics. Their contact information is listed above. For reasons of competitive fairness, direct communication between proposers and topic authors is
not allowed starting 17 December, 2012, when DoD begins accepting proposals for this solicitation.
However, proposers may still submit written questions about solicitation topics through the DoD's SBIR/STTR Interactive Topic Information System (SITIS), in which the questioner and respondent remain anonymous and all questions and answers are posted electronically for general viewing until the solicitation closes. All proposers are advised to monitor SITIS (13.1 Q&A) during the solicitation period for questions and answers, and other significant information, relevant to the SBIR 13.1 topic under which they are proposing.

If you have general questions about DoD SBIR program, please contact the DoD SBIR Help Desk at (866) 724-7457 or email weblink.