GaN Avalanche Devices for RF Power Generation
Navy SBIR 2015.2 - Topic N152-114
ONR - Ms. Lore-Anne Ponirakis - loreanne.ponirakis@navy.mil
Opens: May 26, 2015 - Closes: June 24, 2015

N152-114    TITLE:  GaN Avalanche Devices for RF Power Generation

TECHNOLOGY AREAS:  Materials/Processes, Sensors, Electronics

ACQUISITION PROGRAM:  Netted Emulation of Multi-Element Signatures against Integrated Sensors (NEMESIS)

OBJECTIVE:  Develop high efficiency, high power avalanche-diode-based millimeter- (mm-) wave and terahertz (THz) sources in Gallium Nitride (GaN) diodes.

DESCRIPTION:  Radio Frequency (RF) power generation by diode sources enables compact and affordable sources for a wide range of sensor applications. Avalanche breakdown is an important mechanism for the generation of RF power in a two terminal diode. Examples are IMPact ionization Avalanche Transit Time (IMPATT) diodes demonstrated in Silicon, Gallium Arsenide (GaAs), and Indium Phosphide (InP). By both thermal considerations and large breakdown field, Gallium Nitride-based avalanche devices should offer a substantial advance (~100X) in power output with improved efficiency (~2X). The problem in wide bandgap nitrides is that until recently, avalanche breakdown has not been experimentally observed, despite two decades of material advances. The absence of experimental observation is often attributed to the higher dislocation density of current GaN technology, which lowers the breakdown electric field threshold due to non-avalanching mechanisms. Recently there are reports of the observation of avalanche-breakdown-like behavior in GaN devices for power electronics, where avalanche breakdown phenomena are exploited to prevent device burnout. No RF devices have been developed to exploit the avalanche behavior. The goal of this topic is to demonstrate RF power generation in Gallium Nitride or related group III-Nitride diodes exploiting avalanche breakdown.

PHASE I:  Determine feasibility of exploiting avalanche breakdown in the III-Nitride system in a representative diode structure for RF power generation. Demonstrate avalanche gain behavior with a diode in a representative circuit. Design the required device geometries and material properties for W-band operation along with the expected power output and DC conversion efficiency, based on the current state of the art for high quality GaN materials and prior theoretical work on scaling studies of microwave diodes and material properties of GaN. The planned device should be capable of operation up to a nominal current density of 100,000 A/cm2.

PHASE II:  Develop and demonstrate the device design formulated in Phase I. Fabricate the device with the appropriate GaN material technology, processing, and geometry to demonstrate RF power generation at a nominal frequency of 94 GHz in an appropriate circuit. Characterize the device performance as a function of DC operating parameters, circuit matching, and thermal effects. A fixtured device with waveguide output will be delivered to the government for validation along with test data detailing the device performance. Based on the measured device performance and scaling considerations, estimate expected performance for Ka-, and G-band operation.

PHASE III:  Develop an RF source module based on the Phase II results for compact payloads for expendable decoys. Phase III should optimize power output and efficiency and develop device packaging that minimizes device heating through thermal management approaches. Leverage power electronics manufacturing approaches to enable affordable mm-wave sources.

REFERENCES:  

1.                A. K. Panda, D. Pavlidis, and E. Alekseev, “DC and high-frequency characteristics of GaN-based IMPATTs,” IEEE Trans. Electron Devices, vol. 48, pp. 820–823, Apr. 2001.

2.                I. C. Kizilyalli, A. Edwards, H. Nie, et al., “High voltage vertical GaN p-n diodes with avalanche capability,” IEEE Trans. Electron Devices, vol. 60, no. 10, pp. 3067–3070, Oct. 2013.

             

KEYWORDS:  Gallium Nitride GaN; avalanche gain; avalanche diode; IMPATT oscillator; millimeter waves; THz.

TPOC:  Paul Maki

Email:  Paul.Maki@Navy.mil

             

2nd TPOC:  David Meyer

Email:  david.meyer@nrl.navy.mil

             

** TOPIC AUTHOR (TPOC) **
DoD Notice:  
Between April 24 and May 25, 2015 you may talk directly with the Topic Authors (TPOC) to ask technical questions about the topics. Their contact information is listed above. For reasons of competitive fairness, direct communication between proposers and topic authors is
not allowed starting May 26, 2015 , when DoD begins accepting proposals for this solicitation.
However, proposers may still submit written questions about solicitation topics through the DoD's SBIR/STTR Interactive Topic Information System (SITIS), in which the questioner and respondent remain anonymous and all questions and answers are posted electronically for general viewing until the solicitation closes. All proposers are advised to monitor SITIS (15.2 Q&A) during the solicitation period for questions and answers, and other significant information, relevant to the SBIR 15.2 topic under which they are proposing.

If you have general questions about DoD SBIR program, please contact the DoD SBIR Help Desk at 800-348-0787 or sbirhelp@bytecubed.com.


Return

Offical DoD SBIR FY-2015.1 Solicitation Site:
www.acq.osd.mil/osbp/sbir/solicitations/sbir20152/index.shtml