Ultra-Lightweight Protection Shielding Material Against Electromagnetic Interference/Electromagnetic Pulse for Avionics

Navy SBIR 21.1 - Topic N211-027
NAVAIR - Naval Air Systems Command - Ms. Donna Attick - navairsbir@navy.mil
Opens: January 14, 2021 - Closes: February 18, 2021 (12:00pm EDT)

N211-027 TITLE: Ultra-Lightweight Protection Shielding Material Against Electromagnetic Interference/Electromagnetic Pulse for Avionics

RT&L FOCUS AREA(S): General Warfighting Requirements


OBJECTIVE: Develop an ultra-lightweight carbon-based nanostructure composite shielding material capable of replacing metal shielding for naval electronic and avionics equipment for counter electromagnetic interference/electromagnetic pulse (EMI/EMP) defense.

DESCRIPTION: Recently, various functional nanocomposites are emerging as a new class of EMI/EMP shielding materials with light weight and high functionality. For instance, polymer matrices embedded with carbon-based conductive materials have been demonstrated to attain excellent shielding performance.

It is the objective of this program to develop an ultra-lightweight EMI/EMP shielding material, based on the most state-of-the-art graphene composite, that will form a protective shield for naval avionics and other electronic systems against EMI/EMP threats. The graphene composite should be integrated with lightweight polymer to form conformal shield material that can conform to any shapes and sizes of packaging. The conformal composite should have shielding effectiveness of more than 70 dB across the wide frequency range from 500 MHz to 100 GHz for the completely shielded sensitive electronics/avionics. The electrical conductivity of the graphene composite should be higher than 3000S/cm. The weight of the graphene-based shielding composite should weigh no more than 10% of an aluminum shield with equivalent EM shielding performance.

PHASE I: Develop a shielding material composite and fabrication method that meets shielding protection requirements. Use the proposed fabrication method to fabricate a sample of no smaller than 6 x 6 inches in size with appropriate thickness that will meet the shielding protection requirements. Demonstrate the feasibility of the material design via experimentally characterizing the electromagnetic performance of the sample relative to the metal analog in terms of shielding effectiveness over the frequency range from 500 MHz to 100 GHz, in accordance with the MIL-STD requirements [Refs 5, 6, 7, 8]. The Phase I effort will include prototype plans to be developed under Phase II.

PHASE II: Develop, demonstrate and validate a three-dimensional (3-D) enclosure prototype for EMI/EMP shielding protection for naval avionics and electronics. The enclosure prototype dimension should be12x24x6 inches. Perform reliability testing of the prototype enclosure in accordance with MIL-STD 810 [Ref 8] and report the test results. Deliver one prototype for independent testing.

PHASE III DUAL USE APPLICATIONS: Finalize and elevate the EMI/EMP shielding material system. Perform system prototype demonstration in a field environment. Transition the shielding materials to various naval applications such as manned and unmanned air vehicles, radio communication systems, air defense systems, and all avionics and electronics that are vulnerable to EMI/EMP disruptions.

Commercial avionics and electronics can benefit from improved ultra-lightweight shielding of EMI/EMP. Broad and beneficial shielding applications of this type of innovative shielding materials such as any wearable and mobile electronic devices, portable computers, cellular phones, smart watches, and portable/wearable medical devices are envisioned.


  1. Pereira, V. and Kunkolienkar, G.R. "EMP (Electro-Magnetic Pulse) weapon technology along with EMP shielding & detection methodology [Paper presentation]." Conference Proceedings of the 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT), Tiruchengode, India, July 4-6, 2013, pp. 1-5. https://doi.org/10.1109/ICCCNT.2013.6726651
  2. Altun, M.; Karteri, I. and Günes, M. "A study on EMI shielding effectiveness of graphene based structures [Paper presentation]." 2017 International Artificial Intelligence and Data Processing Symposium (IDAP 2017), Malatya, Turkey, September 16-17, 2017, pp. 27-31.https://doi.org/10.1109/IDAP.2017.8090166
  3. Ismach, A.; Druzgalski, C.; Penwell, S.; Schwartzberg, A.; Zheng, M.; Javey, A.; Bokor, J. and Zhang, Y. "Direct chemical vapor deposition of graphene on dielectric surfaces." Nano letters, 10(5), 2010, pp. 1542-1548. https://doi.org/10.1021/nl9037714
  4. Hu, G.; Kang, J.; , Ng, L., Zhu, X.; Howe, R.; Jones, C.G.; Hersam, M.C. and Hasan, T. "Functional inks and printing of two-dimensional materials." Chemical Society Reviews, 47(9), 2018, pp. 3265-3300. https://doi.org/10.1039/c8cs00084k
  5. "MIL-STD-461G, Department of Defense interface standard: requirements for the control of electromagnetic interference characteristics of subsystems and equipment." Department of Defense, December 11, 2015. http://everyspec.com/MIL-STD/MIL-STD-0300-0499/MIL-STD-461G_53571/
  6. "MIL-STD-464C, Department of Defense interface standard: electromagnetic environmental effects, requirements for systems." Department of Defense, December 1, 2010. http://everyspec.com/MIL-STD/MIL-STD-0300-0499/MIL-STD-464C_28312/
  7. "MIL-STD-2169C, Department of Defense interface standard: high-altitude electromagnetic pulse (hemp) environment." Department of Defense, March 31, 2020. http://everyspec.com/MIL-STD/MIL-STD-2000-2999/MIL-STD-2169C_NOTICE-1_56140/
  8. "MIL-STD-810H, Department of Defense test method standard: environmental engineering considerations and laboratory tests." Department of Defense, January 31, 2019. http://everyspec.com/MIL-STD/MIL-STD-0800-0899/MIL-STD-810H_55998/

KEYWORDS: Electromagnetic interference; EMI; electromagnetic pulse; EMP; shielding; lightweight composite; graphene; nanocomposite


The Navy Topic above is an "unofficial" copy from the overall DoD 21.1 SBIR BAA. Please see the official DoD Topic website at rt.cto.mil/rtl-small-business-resources/sbir-sttr/ for any updates.

The DoD issued its 21.1 SBIR BAA pre-release on December 8, 2020, which opens to receive proposals on January 14, 2021, and closes February 18, 2021 at 12:00 p.m. ET.

Direct Contact with Topic Authors: During the pre-release period (Dec 8, 2020 to January 13, 2021) proposing firms have an opportunity to directly contact the Technical Point of Contact (TPOC) to ask technical questions about the specific BAA topic. Once DoD begins accepting proposals on January 14, 2021 no further direct contact between proposers and topic authors is allowed unless the Topic Author is responding to a question submitted during the Pre-release period.

SITIS Q&A System: After the pre-release period, proposers may submit written questions through SITIS (SBIR/STTR Interactive Topic Information System) at www.dodsbirsttr.mil/topics-app/, login and follow instructions. In SITIS, the questioner and respondent remain anonymous but all questions and answers are posted for general viewing. Topic Q&A will close to new questions on February 4, 2021 at 12:00 p.m. ET

Note: Questions should be limited to specific information related to improving the understanding of a particular topicís requirements. Proposing firms may not ask for advice or guidance on solution approach and you may not submit additional material to the topic author. If information provided during an exchange with the topic author is deemed necessary for proposal preparation, that information will be made available to all parties through SITIS. After the pre-release period, questions must be asked through the SITIS on-line system.

Topics Search Engine: Visit the DoD Topic Search Tool at www.dodsbirsttr.mil/topics-app/ to find topics by keyword across all DoD Components participating in this BAA.

Help: If you have general questions about DoD SBIR program, please contact the DoD SBIR Help Desk at 703-214-1333 or via email at DoDSBIRSupport@reisystems.com

[ Return ]